If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)^2+(3x)^2+(2x)^2=5472
We move all terms to the left:
(5x)^2+(3x)^2+(2x)^2-(5472)=0
We add all the numbers together, and all the variables
10x^2-5472=0
a = 10; b = 0; c = -5472;
Δ = b2-4ac
Δ = 02-4·10·(-5472)
Δ = 218880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{218880}=\sqrt{2304*95}=\sqrt{2304}*\sqrt{95}=48\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{95}}{2*10}=\frac{0-48\sqrt{95}}{20} =-\frac{48\sqrt{95}}{20} =-\frac{12\sqrt{95}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{95}}{2*10}=\frac{0+48\sqrt{95}}{20} =\frac{48\sqrt{95}}{20} =\frac{12\sqrt{95}}{5} $
| 6y+29=108 | | 4.20/3.5=x | | X+2(71-x)=114 | | 7x-16+5x+10=180 | | -4(4x-5)=-4 | | 20+2b=b | | 4w-2w+1=3w+20 | | 5a-1=31 | | -4(x+2)=60=2-10 | | -7x+-8-6=-7x+7 | | -8v+14=-v-14 | | (2m-10)-(8m+4)=0 | | -3y+10=25 | | 3250=12.5h+1000 | | -5(-4x+3)+3x-1=-2 | | r−10-2=0 | | 2k+7+3=-14−3 | | 4(x-2)-(x+3)=x-1 | | -6+5m=8m | | 60-2x+2x=180 | | 2w^2-7w+1=0 | | 48-8x=18 | | -2f+9=-9+7f | | 5x=7/12 | | x-13(-5)=-65 | | 5s+14=54 | | -6x+-8-x-6=-5x-2x+2+5 | | −56m=45 | | 8x+3=x+52 | | -8-5(9x+8)=4 | | 2z+10=26 | | 3/4x-5/6=-1x-4 |